質問<2249>2005/3/25
from=きの
「極限値」
limx→±∞(1+1/x)^x=e は用いてよいとして、 ①limx→±∞(x/x-1)^2x ②limx→±∞(2x-1/2x+1)^3x を求めよ。 はじめましてです。どなたか教えてくれませんか? ★希望★完全解答★
お便り2005/3/26
from=wakky
お便り2005/3/26
from=KINO
まず,実数 a(≠0) に対し, y=ax とおけば,x→±∞ ならば y→±∞ (符号の対応は,a>0 のとき同順,a<0 のとき逆) なので, lim_(x→±∞)(1+1/(ax))^(ax)=lim_(y→±∞)(1+1/y)^y=e が成り立つことをしっかり理解して下さい。 (1) x/(x-1) (こう書くと「x 割る x-1」の意味になります)の分子分母を x で割ると, x/(x-1)=1/(1-1/x) ですので, {x/(x-1)}^(2x)=(1-1/x)^(-2x)={(1-1/x)^(-x)}^2 となります。あとは上に書いたことの中で a=-1 とすれば (1-1/x)^(-x) の極限値が求まりますので,答えがわかると思います。 (2) 式の解釈が間違っているかもしれませんが, {(2x-1)/(2x+1)}^(3x),すなわち 「2x-1 を 2x+1 で割った式の 3x 乗」 の極限を求める問題として解法の方針を述べます。 間違っていたらごめんなさい。 分子分母を 2x で割って (2x-1)/(2x+1)=(1-1/(2x))/(1+1/(2x)) =(1-1/(2x))(1+1/(2x))^(-1) なので, {(2x-1)/(2x+1)}^(3x)=(1-1/(2x))^(3x)(1+1/(2x))^(-3x). ここで 1-1/(2x) の指数を 3x=(-2x)(-3/2), 1+1/(2x) の指数を -3x=(2x)(-3/2) と無理やり変形し,y=2x とおくと, {(2x-1)/(2x+1)}^(3x)={(1-1/y)^(-y)(1+1/y)^(y)}^(-3/2) となります。あとは (1) と同じようにして極限を求めれば答えを得ます。 問題の解釈がこれでよければ, (1) は e^2, (2) は 1/e^3(=e^(-3)) となるかと思います。