質問<3794>2010/7/1
from=御手洗
「行列」
小問で次の問題があるのですが,教えてください。 G=[cosθ sinθ] [sinθ -cosθ]としたとき,G^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。 ですが,G^nでnが奇数の時,[cosθ sinθ] [sinθ -cosθ] nが偶数の時[1 0] [0 1] となるのでよいのでしょうか? そうすると,証明の仕方がわからないのですが教えてもらえませんか? ★希望★完全解答★
お便り2010/8/16
from=下野哲史
あってます。 G^2 を計算すると E ですから G^(2k)=(G^2)^k=E^k=E G^(2k+1)=(G^2)^k × G = E^k× G = E×G = G で十分ではないでしょうか? ( k を 0 以上の整数とする)